首先,做两个假定,以方便后面的描述
- 假定按键的默认状态为0,被按下后为1
- 假定按键抖动时长小于20ms,也即使用20ms的消抖时间
核心:方案
- 最容易想到的方案
在按键电平稳定的情况下,当第一次检测到键位电平变化,开始20ms计时,计时时间到后将按键电平更新为当前电平
- 或许这才是最容易想的方案
在20ms计时的过程中,有任何的电平变化都立即复位计时
- 消除按键反应延时抖方案
在有电平变化时立即改变按键输出电平,并开始20ms计时,忽略这其中抖动
测试平台设计(修改代码以仿真的1us代替实际1ms)
- 无抖动 上升沿抖动5毫秒
- 下降沿抖动15毫秒
- 上升和下降沿均抖动19毫秒
附加测试(可以不通过)
- 抖动25毫秒
代码
- 方案1
module debounce( input wire clk, nrst, input wire key_in, output reg key_out ); // 20ms parameter// localparam TIME_20MS = 1_000_000; localparam TIME_20MS = 1_000; // just for test // variable reg [20:0] cnt; reg key_cnt; // debounce time passed, refresh key state always @(posedge clk or negedge nrst) begin if(nrst == 0) key_out <= 0; else if(cnt == TIME_20MS - 1) key_out <= key_in; end // while in debounce state, count, otherwise 0 always @(posedge clk or negedge nrst) begin if(nrst == 0) cnt <= 0; else if(key_cnt) cnt <= cnt + 1'b1; else cnt <= 0; end // always @(posedge clk or negedge nrst) begin if(nrst == 0) key_cnt <= 0; else if(key_cnt == 0 && key_in != key_out) key_cnt <= 1; else if(cnt == TIME_20MS - 1) key_cnt <= 0; endendmodule
- 方案2
module debounce( input wire clk, nrst, input wire key_in, output reg key_out );// localparam TIME_20MS = 1_000_000; localparam TIME_20MS = 1_000; reg key_cnt; reg [20:0] cnt; always @(posedge clk or negedge nrst) begin if(nrst == 0) key_cnt <= 0; else if(cnt == TIME_20MS - 1) key_cnt <= 0; else if(key_cnt == 0 && key_out != key_in) key_cnt <= 1; end always @(posedge clk or negedge nrst) begin if(nrst == 0) cnt <= 0; else if(key_cnt) begin if(key_out == key_in) cnt <= 0; else cnt <= cnt + 1'b1; end else cnt <= 0; end always @(posedge clk or negedge nrst) begin if(nrst == 0) key_out <= 0; else if(cnt == TIME_20MS - 1) key_out <= key_in; endendmodule
- 方案3
module debounce( input wire clk, nrst, input wire key_in, output reg key_out );// localparam TIME_20MS = 1_000_000; localparam TIME_20MS = 1_000; // just for test reg key_cnt; reg [20:0] cnt; always @(posedge clk or negedge nrst) begin if(nrst == 0) key_cnt <= 0; else if(key_cnt == 0 && key_out != key_in) key_cnt <= 1; else if(cnt == TIME_20MS - 1) key_cnt <= 0; end always @(posedge clk or negedge nrst) begin if(nrst == 0) cnt <= 0; else if(key_cnt) cnt <= cnt + 1'b1; else cnt <= 0; end always @(posedge clk or negedge nrst) begin if(nrst == 0) key_out <= 0; else if(key_cnt == 0 && key_out != key_in) key_out <= key_in; endendmodule
- 测试代码
// 按键消抖测试电路// 时间单位`timescale 1ns/10ps// modulemodule debounce_tb; // time period parameter localparam T = 20; // variable reg clk, nrst; reg key_in; wire key_out; // instantiate debounce uut( .clk (clk ), .nrst (nrst ), .key_in (key_in ), .key_out(key_out) ); // clock initial begin clk = 1; forever #(T/2) clk = ~clk; end // reset initial begin nrst = 1; @(negedge clk) nrst = 0; @(negedge clk) nrst = 1; end // key_in initial begin // initial value key_in = 0; // wait reset repeat(3) @(negedge clk); // no bounce // key down key_in = 1; // last 60ms repeat(3000) @(negedge clk); // key up key_in = 0; // wait 50ms repeat(2500) @(negedge clk); // down 5ms, up 15ms // key down, bounce 5ms repeat(251) @(negedge clk) key_in = ~key_in; // last 60ms repeat(3000) @(negedge clk); // key up, bounce 15ms repeat(751) @(negedge clk) key_in = ~key_in; // wait 50ms repeat(2500) @(negedge clk); // down 19ms, up 19ms // key down, bounce 19ms repeat(951) @(negedge clk) key_in = ~key_in; // last 60ms repeat(3000) @(negedge clk); // key up, bounce 19ms repeat(951) @(negedge clk) key_in = ~key_in; // wait 50ms repeat(2500) @(negedge clk); // additional, this situation shoud not ever happen // down 25ms, up 25ms // key down, bounce 25ms repeat(1251) @(negedge clk) key_in = ~key_in; // last 60ms repeat(3000) @(negedge clk); // key up, bounce 25ms repeat(1251) @(negedge clk) key_in = ~key_in; // wait 50ms repeat(2500) @(negedge clk); // stop $stop; endendmodule
放在最后的,并不一定是最不重要的
对于上面的三种方案,我比较喜欢第三种方案,它更贴合实际的按键状态,以上的代码我都做过modelsim仿真,但还没有在实际的项目中验证。在整理准备这个博客的时候,我又想到了一个感觉是更巧妙的方案,具体是这样的:在第三个方案的基础上,因为按键输入有变化的第一时刻,输出就已经改变了,在这种情况下,我可以把计时的时长改为一个很小的值,该值只要比抖动中的最长高低电平变化时间长即可。但想想也没这个必要,且这个抖动的高低电平变化时长我也很难去给它界定一个值。